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The jamming transition is accompanied by a rich phenomenology such as hysteresis or nonlocal effects
that is still not well understood. Here, we experimentally investigate a model frictionless granular layer
flowing down an inclined plane as a way to disentangle generic collective effects from those arising from
frictional interactions. We find that thin frictionless granular layers are devoid of hysteresis of the avalanche
angle, yet the layer stability increases as it gets thinner. Steady rheological laws obtained for different layer
thicknesses can be collapsed into a unique master curve, supporting the idea that nonlocal effects are the
consequence of the usual finite-size effects associated with the presence of a critical point. This collapse
indicates that the so-called isostatic length l�, the scale on which pinning a boundary freezes all remaining
floppy modes, governs the effect of boundaries on flow and rules out other propositions made in the past.
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Dense amorphous media close to the solid-liquid tran-
sition present a rich phenomenology such as hysteresis,
finite-size, or nonlocal effects and dilatancy. Understanding
these phenomena, which shape the jamming transition
[1,2], is a major challenge to describe the flow of granular
media [3], foams [4], or soft glassy materials [5]. It is also
important in geophysics to comprehend the occurence of
earthquakes [6], landslides or avalanches [7,8]. The origin
of these phenomena is still poorly understood and much
debated. A striking example illustrating this situation is the
well-known fact that the critical angle θc at which a
granular layer flows under gravity depends on its thickness
h [9,10]. The diversity of interpretations and models put
forward to explain this property—successively attributed to
dilatancy effects [11], to a diverging correlation length
[12–15], to the consequence of nonlocal rheology [16–19],
to boundary effects on mechanical stability [20], or to
hysteresis [21]—highlights the difficulty in addressing the
solid-liquid transition in amorphous media when many
effects are potentially entangled.
Recently, we have developed a model granular system in

which it is experimentally possible to tune, and even
eliminate, solid friction between grains. This experimental
system provides the means to highlight the frictional
transition at the origin of shear thickening in dense
particulate suspensions [22]. More importantly, when
investigated in a rotating drum configuration, this model
granular system revealed that both the Reynolds dilatancy
effects and the hysteresis of the avalanche angle (the fact
that the starting and stopping avalanche angles are differ-
ent) disappear in the absence of interparticle friction
[22,23]. Such a system of frictionless spheres thus provides
a unique opportunity to study the flowing properties of

granular layers without potential interplay with hysteretic
behaviors or dilatancy effects.
About two decades ago, such an ideal granular material

was studied numerically by Peynaud and Roux [24]. Since
then, the investigation of frictionless particulate systems in
numerical simulations, whether in the inertial or viscous
regimes, has brought major contributions to the theoretical
understanding of granular and suspension flows [25–28].
From a fundamental standpoint, this model granular
material bridges frictional granular flows to other amor-
phous frictionless systems such as foams, emulsions, and
glassy materials. It thus provides the appealing possibility
of discriminating features that are specific to frictional
interactions from the more generic ones that emanate from
collective mechanical effects.
In this Letter, we investigate our model system of

frictionless spheres in the inclined plane configuration,
which enables us to both control the system size and
impose a homogeneous friction coefficient μ on the
medium. Our key findings are that (i) hysteresis of the
avalanche angle is absent for frictionless grains whatever
the thickness of the granular layer. By contrast, the layer
stability and dynamics are strongly affected by finite-size
effects. (ii) Flow rules obtained for different layer thick-
nesses collapse into a single master curve with a proper
rescaling of variables. (iii) The latter result is explained by
general finite-size scaling arguments near a critical point
[29]. Our analysis suggests that the length scale on which
flow is affected by a boundary is the so-called isostatic
length l� associated with the jamming transition [30].
Experimental setup and protocols.—We use a model

frictionless granular system composed of silica spheres
of diameter d ¼ 23.46� 1.05 μm [Fig. 1(a)]. When
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immersed in pure water, the surface of these particles is
negatively charged. Under the low external stress used in
this study (below 10 Pa), the resulting repulsive force [31]
prevents the particles from making solid-frictional contacts.
The particles then behave as frictionless spheres [22,23].
The inclined plane is the bottom of a parallelepiped
container of size 20 × 4 × 2 cm3 [Fig. 1(b)]. It is covered
with sandpaper (Grade P500 of roughness ≈30 μm) to
insure rough boundary conditions. Both the inclined plane
and the cameras are mounted on a high precision rotation
stage (PI M-060), which controls the inclination angle θ. To
prepare the granular layer in a presheared configuration and
at a uniform thickness h, we use the following protocol [see
Fig. 1(c)]. The particles are first resuspended and then
allowed to settle to form a layer of uniform thickness
h0 ≈ 30d > h, with a typical flatness of 0.2d per centimeter
in the plane direction. The plane is then tilted at a large
angle to initiate the flow and preshear the suspension.
When the granular layer reaches the desired thickness h,
measured using a laser sheet [Fig. 1(b)], the flow is stopped
by setting the angle θ back to zero.
To determine the rheology of the flowing layer of grains,

we use the fact that, in all our experiments, inertia is
negligible (no acceleration terms) and the flow is uniform
along the plane (no x dependence). In this case, force
balance implies that the suspension friction coefficient is
homogeneous across the layer thickness and is given by the
relation μ ¼ τ=P ¼ tan θ, where τ ¼ Δρϕg sin θðh − zÞ is
the shear stress, P ¼ Δρϕg cos θðh − zÞ is the normal
stress, Δρ ¼ 850 kg=m3 is the density difference between
the particles and the suspending fluid, ϕ is the layer particle
volume fraction, and g is the gravity. Moreover, by imaging
the layer surface, Camera 1 gives access to the grains’
surface velocity vs using particle image velocimetry
[Fig. 1(d)], and Camera 2 tracks the transverse position

of the inclined laser sheet [Fig. 1(e)], thereby giving access
to the layer thickness h, with an absolute resolution of
�2.5 μm. These two measurements give access to the
viscous number J ¼ η_γ=P ¼ 2ηvs=h2ϕΔρg cos θ, where η
is the fluid viscosity and _γ ¼ 2vs=h is the shear rate
assuming a parabolic velocity profile [32] (see A in the
Supplemental Material [33]). Here, the volume fraction is
equal to the maximum packing of frictionless spheres,
ϕ ¼ 0.64, since measurements are performed in the limit of
small viscous number J < 10−3. Note also that in all
experiments, the stress from the fluid above the granular
layer is negligible (see B in the Supplemental Material).
To characterize the stability of the flow and potential

hysteretic behaviors of the avalanche angle, we developed a
sensitive speckle correlation technique [34] able to detect
particle velocities as small as 0.5 nm=s (see C in the
Supplemental Material).
Influence of the system size on hysteresis and layer

stability.—We first address whether finite-size frictionless
systems exhibit hysteretic behavior of the flow onset [see
Fig. 2(a)]. Starting from a presheared granular layer having
the desired thickness h, the inclination angle is increased to
an initial angle θ0 [θ0 ¼ 6.5° in Fig. 2(a)]. As shown in
Fig. 2(a), the speckle correlation C drops much below Cth
(red dashed line), indicating that the granular layer starts
flowing. The angle of inclination θ is then successively
decreased and increased using an interval halving pro-
cedure to determine and gradually refine the frontier
between flow and arrest. For each step, the value of θ is
maintained constant until the system relaxes to its steady
state (flow or arrest), such that the protocol is independent
of the rate of change of θ. Note that, as the inclination
angle always remains positive, the granular layer always
flows down the plane in the same x direction. Moreover,
the flow rates involved here are sufficiently small

(a) (b)

(e)

(d)(c)

FIG. 1. (a) Top: Picture of the silica particles. Bottom: Schematic of the electrostatic repulsive forces preventing frictional particle
contacts. (b) Schematic of the experimental setup. (c) Successive steps to prepare a uniform and presheared layer of grains. (d) Image
from Camera 1 giving access to the particle surface velocity vs using particle image velocimetry. (e) Image from Camera 2 used to
measure the pile thickness h from the laser sheet position and the pile stability from the time correlation of the laser speckle.
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[vs ≈Oð10−6Þ m=s corresponding to _h ∼ 0.2d per hour)
that during the whole protocol, the layer thickness remains
constant within 0.5d, as directly checked. As illustrated in
Fig. 2(a), the interval halving procedure converges to a
unique critical inclination angle θcðh=dÞ determined with a
resolution of �0.05° (blue dashed line), and this occurs for
all the layer thicknesses investigated [1 < h=d < 22]. We
checked that the critical stability angle is independent of the
choice of the initial angle θ0 of the interval halving
procedure. These results show that a layer of frictionless
particles stops or starts flowing at a unique critical angle
θcðh=dÞ—the proof that no hysteresis of the avalanche
angle is observed in frictionless granular systems, even of
finite size.
The critical stability angle θcðh=dÞ is plotted in Fig. 2(b).

For granular layers of thickness larger than 10d, the critical
stability angle is nearly constant θ∞c ≃ 5° and in good
agreement with previous experimental (6° in [23]) and
numerical results (5.73° in [24]) obtained for frictionless
systems in the infinite size limit. For thinner layers, however,
the critical stability angle θc increases and, fitting the law

h=d ¼ ½ðtan θc − tan θ∞c Þ=a�−α; ð1Þ

yields α ¼ 0.9� 0.1, a ¼ 0.15� 0.03, and θ∞c ¼ 5.0°�
0.1° (error bars set the parameter range forwhich residuals of
the fit appear to behave randomly). These results show that,
conversely to hysteresis, finite-size effects are still in play
and significantly affect the stability of frictionless granular
layers.
Influence of the system size on rheology.—We now study

how finite-size effects influence the granular layer dynamic
flowing properties in the aim of obtaining constitutive flow
rules of the form μðJ; h=dÞ. To this end, we fix the layer
thickness h and take advantage of the setup to measure J
while imposing a quasistatic decreasing ramp of μ ¼ tan θ
using the rotation stage. This quasisteady protocol pro-
vides, in a single measurement, the full rheological laws
μðJ; h=dÞ for a given value of h=d. We checked that true
steady state measurements (constant μ) give the same
results (see D in the Supplemental Material).
The rheological laws μðJ; h=dÞ are shown in Fig. 3(a)

for various layer thickness h=d and for a wide range of J.
We recover that the system size has a strong effect on the
flow threshold. The quasistatic friction coefficient
μcðh=dÞ ¼ μðJ → 0; h=dÞ (crosses) obtained from dynami-
cally ramping down μ are fully consistent with the critical
stability angle obtained from the “static” interval halving
procedure procedure shown in Fig. 2(b), confirming the
robustness of our finite-size effect characterization.
Moreover, plotting the difference μðJ; h=dÞ − μcðh=dÞ as
function of J shows that the system size also affects the
flow dynamical properties [Fig. 3(a), inset]. The large
system (h=d ≃ 18.2) exhibits a power law with an exponent
of 0.38, in close agreement to the exponents measured
experimentally in a rotating drum (0.37� 0.05 [23]) and
derived theoretically (β ¼ 0.35 [28], from [35,36]) for
frictionless spheres in the infinite size limit. However,
the power law exponent systematically increases as the
system size is decreased.
Together with Fig. 2(b) and Eq. (1), these observations

support the two following asymptotic regimes:

μðJ → 0; h=dÞ ∼ μ∞c þ aðh=dÞ−1=α; and ð2Þ

μðJ; h=d → ∞Þ ∼ μ∞c þ bJβ: ð3Þ

To rationalize the rheological laws μðJ; h=dÞ, we use the
framework of phase transitions and the usual finite-size
scaling assumption valid near a critical point [29], which
was recently used to characterize other aspects of the
jamming transition, including the fluctuations of the critical
packing fraction ϕc [37] or the characteristic strain needed
to jam a packing [38,39]. In this view, J is the order
parameter controlled by the excess macroscopic friction
Δμ≡ μ − μ∞c and system size h:

(a)

(b)

FIG. 2. Stability of a frictionless granular layer. (a) Interval
halving procedure: controlled inclination angle θ (in blue) and
resulting speckle correlation C (in red) versus time for a layer of
thickness h=d ≃ 22. Red dashed line: Cth ¼ 0.96 delimiting
flow ðC < CthÞ from arrest ðC > CthÞ. Blue dashed line: critical
stability angle θcðh=dÞ. (b) Stability diagram: granular
layer thickness h=d versus critical stability angle θc. Different
open markers indicate different runs. Crosses correspond to the
quasistatic friction coefficient μcðh=dÞ ¼ μðJ → 0; h=dÞ ob-
tained from Fig. 3(a). Black line: best fit with h=d¼
½ðtanθc− tanθ∞c Þ=a�−α yielding α¼−0.9�0.1, a ¼ 0.15� 0.03,
and θ∞c ¼ 5.0°� 0.1°.
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JðΔμ; hÞ ¼ Δμ1=βf½h=ξðΔμÞ�; ð4Þ

where f is some scaling function and ξðΔμÞ is a diverging
length scale. This scaling form is consistent with Eq. (2) if
ξðΔμÞ ¼ hðθcÞ=c0 ∼ dΔμ−α, where c0 is some constant
and fðc0Þ ¼ 0, while Eq. (3) imposes fð∞Þ ¼ b−1=β.
Equation (4) can be rewritten as

ΔμðJ; hÞ ¼ ðh=dÞ−1=αg½ðh=dÞ1=αβJ�; ð5Þ

where g is some function. This result implies that the data
of Fig. 3(a) should collapse on a single curve by plotting the
rescaled friction coefficient ðh=dÞ1=αΔμðJ; hÞ as a function
of the rescaled viscous number ðh=dÞ1=αβJ. Remarkably,
the collapse shown in Fig. 3(b) is excellent without any

fitting parameters [since β is theoretically predicted and α
extracted from Fig. 2(b)]. This description unifies both
flow properties and arrest. Quantitatively, we find that
the scaling function g is well-approximated by gðxÞ ¼
aþ bcxγþβ=ðbxβ þ cxγÞ with a ¼ 0.15, b ¼ 2.0� 0.1,
c ¼ 29� 5, and γ ¼ 0.73� 0.05 [black line in Fig. 3(b)].
Diverging length scale.—We now propose a scaling

argument for the exponent α ≈ 0.9 characterizing the
observed finite-size effects in frictionless granular flows.
We use two facts: (i) in packing of particles, there exists
a diverging “isostatic length scale” l� ∼ d=jδzj (where
δz ¼ z − z∞c and z∞c is the threshold “isostatic” co-
ordination where the infinite system rigidifies [40]) that
characterizes how pinning a boundary affects linear proper-
ties of the material. Specifically, l� controls both the
elasticity of overconstrained materials [30] and the scale
on which pinning boundaries rigidify a floppy, undercon-
strained system [41]. We posit that l� is also the length
scale on which a granular flow is affected by the presence
of a boundary, i.e., hðθcÞ ∼ l� ∼ d=jδzj. (ii) In flowing
systems of hard frictionless particles, increasing the macro-
scopic friction breaks more contact and reduces the
coordination. The microscopic theory of [28] predicts
jδzj ∼ Δμ0.83 both for overdamped and inertial flows, in
good agreement with numerics. Putting these two results
together, we find that jamming occurs when the added
constraints from the boundary balance the degrees of
freedom of the bulk, leading to hðθcÞ ∼ dΔμ−α with
α ¼ 0.83, in close agreement with our observation
α ¼ 0.9� 0.1. Note that another popular length scale that
diverges near jamming, lc ∼ d=

ffiffiffiffiffiffiffijδzjp

[42], which charac-
terizes the response to a point perturbation [41], is ruled out
as it would lead to α ¼ 0.41 incompatible with our data.
Discussion.—In this Letter, we have shown experimen-

tally that a finite-size frictionless granular layer is devoid of
hysteresis: a granular layer of thickness h=d stops or
starts flowing at unique critical stability angle θcðh=dÞ.
Nonetheless, thinner layers are more stable, indicating that
finite-size effects are still in play even without solid
friction, as previously observed with foams [4]. These
findings highlight the fact that no hysteretic behaviors
emerge from finite-size effects and that hysteresis is a
feature entirely rooted to the presence of interparticle
friction [23,28].
The critical stability angle is found to follow

h=d ∼ ðtan θc − tan θ∞c Þ−α with α ≈ 0.9� 0.1 [Eq. (1) and
Fig. 2(b)]. Our results clearly reject mechanisms based on
dilatancy effects as an explanation for this behavior
as frictionless granular layers are not dilatant [24]. The
unicity of the critical curve separating flow and arrest
(hstart ¼ hstop) also challenges mechanisms based on flow-
induced mechanical noise [16,17] or granular fluidity [19],
since dynamic noise is absent when starting from a static
configuration. Our experimental work thus called for a new
coherent explanation. Here we have argued that nonlocal

(a)

(b)

FIG. 3. (a) Macroscopic friction coefficient μ versus viscous
number J for different layer thicknesses h=d. Solid lines: Best fits
with μ ¼ μc þ b0Jβ0 . The values of μcðh=dÞ (crosses) are reported
in Fig. 2(b) using the relation μcðh=dÞ ¼ tan θcðh=dÞ. Inset:
Same data plotting the reduced macroscopic friction μ − μcðh=dÞ
versus J. (b) Rescaled flow rule plotting ðh=dÞ1=αðμ − μ∞c Þ
versus ðh=dÞ1=αβJ with α ¼ 0.9 and β ¼ 0.35. Black line:
gðxÞ¼aþðcxγÞðbxβÞ=ðbxβþcxγÞ, with a¼0.15, b¼2.0�0.1,
c ¼ 29� 5, and γ ¼ 0.73� 0.05.
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effects are a necessary consequence of the finite-size effects
near a critical point, justifying the remarkable collapse of
flow curves for different thicknesses into a single master
curve. The extracted diverging length scale is consistent
with the isostatic length scale following l� ∼ dΔμ−0.83,
which is predicted to hold also for inertial frictionless
systems [28].
Here, we have generalized a boundary dependent argu-

ment from packings (the effect of l�) to describe the
influence of a wall on a thin granular layer. Such a
generalization is not straightforward. Future works should
investigate whether this argument can also be applied to
other types of boundaries, such as plane shear or heap flow
confined between walls. Another key question is its
generalization to the frictional case. In [43], it was argued
that the role of excess coordination in frictionless particles
is then replaced by the fraction of sliding contact for
frictional ones. The latter appears to be proportional to Δμ.
Following the above length-scale argument, we would
obtain α ¼ 1, which is consistent with observations [9,20].
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